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H I G H L I G H T S  

• Stable orders of meteorological effects on six air pollutants in North China. 
• Boundary layer height’s effects can be modeled by the surface meteorological variables. 
• PM2.5, PM10, SO2 and CO shared a common order of variable importance.  
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A B S T R A C T   

To gain insight on the meteorological effects of air pollution, we study the relative importance of surface 
meteorological variables and boundary layer height (BLH) on six major air pollutants according to the orders of 
variables being selected in a forward variable selection algorithm. It is found that there was a strong agreement 
in the orders of relative importance for the major pollutants among six major cities in North China, which implies 
regularities in the meteorological processes of air pollution in that region. In particular, PM2.5, PM10, SO2 and CO 
shared a common variable importance order and were mostly impacted by the dew point temperature and air 
pressure, while the NO2 and O3 were mostly influenced by the boundary layer height (BLH) and temperature, 
respectively. We evaluate the impacts of BLH on the pollution levels given the surface meteorological variables. It 
is found that BLH can be well modeled by the surface meteorological variables. Thus, air quality assessment 
without using BLH would also produce adequate results.   

1. Introduction 

Air pollution is an enduring challenge encountered by many coun-
tries including China. A substantial part of China has experienced severe 
air pollution in the last two decades. Epidemiological studies have 
shown a high correlation between exposure to air pollutants and human 
health (Donaldson et al., 1998; Schwartz, 2000; Pope III et al., 2002; 
Chen et al., 2013); research has also found that air pollution may cause 
social and economic problems (Xie et al., 2016; Zhang et al., 2017b; 
Feng et al., 2019). 

Mitigation and control for air pollution are needed in these countries, 

which requires understanding the mechanisms of the air pollution with 
respect to its main drivers. 

Air pollution is impacted by both the underlying emission and the 
meteorological condition. As one of the two main drivers, it is important 
to understand the meteorological aspects of air pollution based on the 
air quality and meteorological data which are quite available in this era 
of data. 

The relationship between meteorological factors and the pollutant 
concentration has be considered in a range of studies. Tai et al. (2010) 
studied the correlation of PM2.5 and its components with meteorological 
variables in the United States by applying multiple linear regression and 

* Corresponding author. Center of Statistical Research and School of Statistics, Southwestern University of Finance and Economics, Chengdu, 611130, China. 
** Corresponding author. School of Mathematical Sciences and Guanghua School of Management, Peking University, Beijing, 100871, China. 

E-mail addresses: huangyaxuan@pku.edu.cn (Y. Huang), guobin@swufe.edu.cn (B. Guo), hxsun@pku.edu.cn (H. Sun), liuhuijie16@pku.edu.cn (H. Liu), 
songxichen@pku.edu.cn (S.X. Chen).  

Contents lists available at ScienceDirect 

Atmospheric Environment 

journal homepage: www.elsevier.com/locate/atmosenv 

https://doi.org/10.1016/j.atmosenv.2021.118737 
Received 22 July 2021; Received in revised form 15 September 2021; Accepted 15 September 2021   

mailto:huangyaxuan@pku.edu.cn
mailto:guobin@swufe.edu.cn
mailto:hxsun@pku.edu.cn
mailto:liuhuijie16@pku.edu.cn
mailto:songxichen@pku.edu.cn
www.sciencedirect.com/science/journal/13522310
https://www.elsevier.com/locate/atmosenv
https://doi.org/10.1016/j.atmosenv.2021.118737
https://doi.org/10.1016/j.atmosenv.2021.118737
https://doi.org/10.1016/j.atmosenv.2021.118737
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosenv.2021.118737&domain=pdf


Atmospheric Environment 267 (2021) 118737

2

found meteorological variables, can explain up to 50% of the variation 
of PM2.5. Liang et al. (2015, 2016) revealed that PM2.5 concentration 
was highly influenced by meteorological conditions in Beijing and found 
that 75% of the hourly variation of PM2.5 was driven by meteorological 
factors. Shen et al. (2018) studied the monthly PM2.5 levels in Beijing’s 
winters during 2010–2017 and found that 81% of the variation can be 
explained by the first principal component of 850 hPa meridian wind 
velocity and the relative humidity. Vu et al. (2019) applied the random 
forest to assess the impact of clean air action on six major pollutants in 
Beijing by decoupling the impact of meteorology on ambient air quality. 

Stafoggia et al. (2019) estimated the daily PM10 and PM2.5 concen-
trations in Italy during 2013–2015 using the random forest with similar 
meteorological variables as well as the planetary boundary layer height 
(BLH). Choubin et al. (2020) studied the hazard prediction of PM10 in 
Barcelona Province, Spain and found seven critical features among a 
total of thirteen features, which included topographic wetness index and 
precipitation. 

In an attempt to construct timely statistical measures to reflect the 
underlying emission based on the air quality data, Liang et al. (2015) 
and Zhang et al. (2020) proposed meteorologically adjusted pollution 
measures (average and quantile) under the meteorological baseline 
distribution constructed from the readily available surface meteorolog-
ical data. They showed that the meteorologically adjusted pollution 
measures can reflect the underlying changes in the emission, while the 
unadjusted raw average pollution levels are subject to meteorological 
confounding and cannot objectively reflect the underlying emission. 

Despite the wide range of studies on the meteorological effects of the 
air quality motivated from different contexts, there is still a lack of in- 
depth understanding on the relative importance of the meteorological 
variables on different air pollutant species. Specifically, given the inter- 
dependence among the meteorological variables, is there an established 
order of relative meteorological importance for an air pollutant in a 
region? An established order of relative importance would imply a 
common mechanism in the meteorological process of the air pollutant, 
which would be useful for the modeling and prediction for the air 
pollutant. 

This paper tries to answer the above question by analysing air quality 
data in six major northern China cities. The orders of the variable 
importance are determined by the ranks of variables being selected in a 
step-wise forward selection procedure (Hastie et al., 2009) in the 
regression of pollution concentration on the meteorological variables. 
The forward variable selection orders take into account the 
inter-dependence among the meteorological variables relative to the 
target pollutant. The study finds that there was a strong agreement in the 
orders of meteorological variables in affecting the pollution concentra-
tion among the six major cities in North China. 

In particular, PM2.5, PM10, SO2 and CO shared a common order of 
meteorological importance led by the dew point temperature, while NO2 
and O3 were mostly influenced by the boundary layer height (BLH) and 
air temperature, respectively. These suggest there is regularity in the 
meteorological processes for the six species of air pollutants in North 
China. 

The planetary boundary layer height (BLH) defines the vertical 
dispersion property and is known to be influential to the ground-level 
concentration of air pollutants. Studies have used BLH as a key factor 
in the formation and evolution of heavy air pollution (Liu et al., 2013; 
Quan et al., 2014; Tang et al., 2016; Miao and Liu, 2019). A negative 
correlation between BLH and pollution concentration from observed 
data was found in Zhang et al. (2009); Miao et al. (2017); Gui et al. 
(2019). Xiang et al. (2019) revealed a significant negative correlation 
between BLH and PM2.5 in Beijing during the winter heavy pollution. 
Miao et al. (2021) found that the relationships between planetary 
boundary layer and PM2.5 and O3 in the summer of Beijing and Shanghai 
were different with heavy pollution being associated with lower BLH in 
Beijing, but higher BLH in Shanghai. That higher pollution being asso-
ciated with higher BLH in Shanghai was due to confounding of 

transported pollution from warmer inland under westerly wind, which 
indicates the importance of treating the multivariate meteorological 
variables collectively. 

However, unlike the surface meteorological variables which are 
readily available, there is a delay of around three months in the BLH data 
assimilated by the European Centre for Medium-Range Weather Fore-
casts (ECMWF). There are two pending questions regarding the role of 
BLH in the air pollution processes. One is how much information con-
tained in BLH can be explained by the surface meteorological variables; 
and the other is the impacts of BLH on the meteorological adjusted 
average pollution levels. The study finds that, despite a significant 
negative correlation with the pollutants, BLH was not highly ranked for 
the five non-NO2 species after considering the surface variables in the 
modeling. 

Furthermore, more than 77% of the variation in the BLH can be 
explained by the surface variables in the six cities. Even for NO2, where 
BLH was the most important variable, the effects of BLH on NO2 was less 
than 1.24% of the meteorologically adjusted average concentration. 
Therefore, using only the surface meteorological variables for air quality 
assessment would produce adequate results. 

The paper is organized as follows. Section 2 outlines the data and the 
study region. Research methods are outlined in Section 3, which include 
the nonparametric regression, the forward variable selection and the 
meteorological adjustment. Section 4 reports results of the analysis. 
Additional information, extra tables and figures are provided in the 
supplementary materials (SM). 

2. Study region and data 

The study region contains six major cities in the North China, which 
include two mega-cities of Beijing and Tianjin, and four cities: Shi-
jiazhuang, Jinan, Zhengzhou and Taiyuan, which are the provincial 
capitals of Hebei, Shandong, Henan and Shanxi provinces, respectively. 
The region encompassed by Beijing, Tianjin and the four provinces has 
been the main battle ground for the air pollution mitigation campaign in 
China; see Fig. S1 in SM for the geographical location of the six cities. 
The time range of the study was from March 1, 2013 to February 28, 
2021, which contained 8 seasonal years from spring to winter. The unit 
of our study is season, consisting of spring from March to May, summer 
from June to August, fall from September to November, and winter from 
December to February next year. 

The air quality data consisted of hourly concentrations of air pol-
lutants (PM2.5, PM10, SO2, NO2, CO and O3) from 53 monitoring sites, 
which are directly managed by the Ministry of Ecology and Environment 
(MEE). For ozone, we only focused on the period from noon to 7pm (8-h 
O3), when the concentrations tended to be the highest. The 53 air quality 
sites consisted of 11 sites in Beijing and Tianjin, 7 in Shijiazhuang, 8 
from Jinan, Zhengzhou and Taiyuan, respectively. 

The meteorological data contained hourly surface (2 m) meteoro-
logical observations of six variables: air temperature (TEMP) and pres-
sure (PRES), dew point temperature (DEWP), wind direction (WD), 
cumulative wind speed (IWS), and cumulative precipitation (IPREC). 
The wind directions were grouped into five broad directions: North-
westerly (NW), Northeasterly (NE), Southwesterly (SW), Southeasterly 
(SE) and CV, where CV was for the calm (wind speed less than 0.5 m/s) 
and variable wind. The cumulative wind speed was the summation of 
the wind speed since a wind direction was established and was reset to 
zero when there was a change in the direction. 

Similarly, the cumulative precipitation referred to the sum of pre-
cipitation since the hour when it rained and was reset to zero when there 
was an hour without precipitation. Data of the above variables were 
from 12 weather observing stations from China Meteorological 
Administration (CMA), where 5 of them were located in Beijing, 3 in 
Tianjin and 1 each in other four cities. 

We also considered the reanalyzed BLH data from the ERA5 data set 
of ECMWF, which contained hourly BLH at a grid size of 0.25◦ × 0.25◦. 
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We matched each CMA site to the nearest grid of the ERA5 data for BLH 
as well as to the nearest air quality site. The time range of surface 
meteorological and BLH data was from March 1, 2011 to February 28, 
2021. Here, two more years of meteorological data were employed to 
construct the meteorological baseline in the meteorological adjustment 
outlined in Section 3.3. The locations of the 53 air quality sites and the 
meteorological stations are displayed in Fig. S2 in SM. 

In additional to the reanalyzed BLH data from ECMWF, there are 
other approaches to estimate BLH, which include the radiosonde 
approach by NOAA (Durre and Yin, 2008) and China’s CMA (Guo et al., 
2016). The BLH from the radiosonde observations have usually two 
(sometimes four in summer) observations per day. Seidel et al. (2012) 
analysed BLH measurements from four approaches over the United 
States and Europe, and found it was suitable to estimate BLH based on 
the bulk Richardson number (Vogelezang and Holtslag, 1996), which is 
the commonly used approach adopted by both the radiosonde obser-
vation and the reanalysis approach that produced the ECMWF’s ERA5 
reanalysis BLH dataset. Based on the radiosonde data of CMA, the 
properties of planetary boundary layer and its relationship with other 
meteorological variables in China have been studied. Guo et al. (2019) 
observed a shift in the temporal trend of BLH in China and found BLH 
was negatively associated with relative humidity, while positively 
associated with the near-surface temperature. Zhang et al. (2018) 
studied the thermodynamic stability of planetary boundary layer in 
China in summer. They found that convective boundary layer (CBL) 
dominated in summer throughout China (70%), with sometimes neutral 
boundary layer (NBL, 26%) and stable boundary layer (SBL, 4%) and 
BLH of CBL and NBL was positively (negatively) associated with 
near-surface temperature (humidity), whereas no apparent relationship 
was found for SBL. 

Studies (Seidel et al., 2012; Guo et al., 2016) had shown that the BLH 
estimates from the radiosonde and the ERA Interim, the predecessor of 
the ERA5, had consistent pattern. Seidel et al. (2012) evaluated the BLH 
data at the United States and Europe and found that the radiosonde and 
reanalysis datasets show similar patterns of spatial and seasonal vari-
ability though with biases that vary spatially, seasonally and diurnally. 
Guo et al. (2016) compared the BLH measurements from the radiosonde 
measurement from China’s CMA and the ERA Interim and found good 
agreement between the two sources. Another aspect is that the BLH data 
from the ERA5 is at the hourly frequency which matches the frequency 
of the air quality data. Therefore, we choose the BLH reanalysis data 
from the ERA5 of ECMWF in our analysis. 

3. Methods 

We introduce the regression model used in the study, the forward 
variable selection that determines the order of the meteorological var-
iables’ importance and the meteorological adjustment approach. 

3.1. Nonparametric regression models 

To avoid potential model mis-specification, we consider nonpara-
metric regression modeling of each air pollutant with respect to the 
meteorological variables. The nonparametric aspect of the model makes 
it more adaptive to the complex meteorological processes than the linear 
or nonlinear parametric regression models. 

Let Yijt(s) denote the concentration of a pollutant, say PM2.5, at hour t 
in season j and year i of a monitoring site s, Xijt(s) be a d-dimensional 
vector collecting d meteorological variables, and Uijt(s) be the underly-
ing emission leading to the pollution. The following nonparametric 
model quantifies the relationship between the concentration Yijt(s), the 
emission Uijt(s) and the meteorological Xijt(s): 

Yijt(s) = m̃j(Uijt(s),Xijt(s)) + eijt(s), t = 1, 2,…, nij, (3.1)  

where m̃j(u(s), x(s)) = E(Yijt(s)|Uijt(s)= u(s),Xijt(s)= x(s)) is the regres-

sion function, eijt(s) is the residual satisfying E(eijt(s)|Uijt(s), Xijt(s)) =
0 and has the finite second moment, and nij is the total number of ob-
servations in season j of year i at the site s. 

As the emission information is largely not available at the hourly 
frequency, we have to condition on the observable meteorological var-
iable Xijt(s) to attain the following observable model 

Yijt(s) = mij(Xijt(s)) + εijt(s), t = 1, 2,…, nij, (3.2)  

where mij(x(s)) = E(Yijt(s)|Xijt(s) = x(s)) is the regression function by 
taking the conditional expectation on the observable meteorological 
data only, εijt(s) is the residual satisfying E(εijt(s)|Xijt(s)) = 0, var(εijt(s)|
Xijt(s)) = σ2

ij(Xijt(s)). Despite Uijt(s) is latent, its information has been 
reflected in the regression function mij(⋅) via the yearly index i which 
was not appeared in Model (3.1). See Liang et al. (2015) and Zhang et al. 
(2020) for more details on the linkage between Models (3.1) and (3.2). 

In Model (3.2), specific parametric form of the regression function 
mij(⋅) is not assumed to allow model flexibility and non-linear pattern in 
the pollution generation processes. The yearly seasonal regression 
function mij(⋅) can be estimated by the nonparametric kernel estimator 
(Härdle, 1990). Specifically, let k(⋅) be a univariate kernel function 
which is a symmetric probability density function, for instance the 
Gaussian kernel k(u) = (2π)− 1/2 exp(− u2/2), and define the multivariate 
product kernel 

Kh(x) = (h1h2⋯hd)
− 1k(x1 / h1)k(x2 / h2)⋯k(xd / hd),

where x = (x1, x2,…, xd)
′

and h = (h1, h2,…, hd)
′

is a vector of smooth-
ing bandwidths. The kernel estimator of mij(x) is 

m̂ij(x) =
∑nij

t=1Kh(x − Xijt(s))Yijt(s)
∑nij

t=1Kh(x − Xijt(s))
. (3.3) 

The smoothing bandwidths h can be selected by the cross validation 
method (Härdle, 1990; Liang et al., 2015). 

3.2. Forward variable selection 

An important question in the air quality assessment is the relative 
importance of the meteorological variables on the average pollution 
level through the regression function mij(⋅). We consider the forward 
variable selection procedure for the nonparametric regression model, 
which selects the most influential variable once at a time that achieves 
the best fitting performance (Hastie et al., 2009). 

To find the most important (the first one to be selected) variable for a 
pollutant, we start with the univariate model 

Yijt(s) = m(1)
ij (X(1)

ijt (s)) + ε(1)ijt (s), t = 1, 2,…, nij, (3.4)  

where X(1)
ijt (s) is a candidate covariate, say DEWP or BLH, m(1)

ij (X(1)
ijt (s)) =

E(Yijt(s)|X(1)
ijt (s)) is the conditional mean given the covariate and ε(1)ijt (s) is 

the residual. It is noted here and throughout this subsection that the 
function m(1)

ij (⋅) changes with respect to different covariate X(1)
ijt (s) and 

target cities. 
Let m̂(1)

ij (⋅) be the kernel estimate of m(1)
ij (⋅) according to the generic 

estimator (3.3). The fitting Mean Square Error (MSE) of each variable 
X(1)

ijt (s) at site s for year i and season j is 

MSE(1)
ij (X(1)

ijt (s), s) =
1
nij

∑nij

t=1
{Yijt(s) − m̂(1)

ij (X(1)
ijt (s))}

2
. (3.5) 

To evaluate the explanation power of the meteorological variables, 
we use the coefficient of determination R2 to assess fitting performance 
of the covariate. For nonparametric regression, Doksum and Samarov 
(1995) proposed to use 
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R2
ij(1, s) =

[∑nij
t=1{Yijt(s) − Yij(s)}{m̂(1)

ij (X(1)
ijt (s)) − Yij(s)}

]2

∑nij
t=1{Yijt(s) − Yij(s)}2∑nij

t=1{m̂(1)
ij (X(1)

ijt (s)) − Yij(s)}
2, (3.6)  

where Yij(s) =
∑nij

t=1Yijt(s)/nij is the average of Yijt(s) in season j of year i. 
We use the MSE to evaluate the importance of explanatory variables. 

By taking the average of MSE(1)
ij (X(1)

ijt (s), s) for all the monitoring sites in 
the city, we obtain the MSE of the city for using the univariate regressor 
X(1)

ijt at year i and season j. The most important explanatory variable for 

the city, denoted as X(1)∗
ijt , at year i and season j is the one that produced 

the smallest MSE of the city. 
To select the second most important regressor, we consider the 

bivariate regression model 

Yijt(s) = m(2)
ij (X(2)

ijt (s)) + ε(2)ijt (s), t = 1, 2,…, nij, (3.7)  

where X(2)
ijt (s) = (X(1)∗

ijt (s),X(2)
ijt (s))

′

for a X(2)
ijt (s) other than the already 

selected X(1)∗
ijt (s), m(2)

ij (X(2)
ijt (s)) = E(Yijt(s)|X(2)

ijt (s)) is the conditional mean 

given X(2)
ijt (s) and ε(2)ijt (s) is the corresponding residual. Similar to 

selecting the first variable, the MSE with X(2)
ijt (s) as covariates is 

MSE(2)
ij (X(2)

ijt (s), s) =
1
nij

∑nij

t=1
{Yijt(s) − m̂(2)

ij (X(2)
ijt (s))}

2
, (3.8)  

where m̂(2)
ij (⋅) is also attained via (3.3). We select the second important 

variable by minimizing the average MSE in (3.8) over the sites in the 
city. The coefficient of determination R2(2, s) by using X(2)

ijt (s) is 

R2
ij(2, s) =

[∑nij
t=1{Yijt(s) − Yij(s)}{m̂(2)

ij (X(2)
ijt (s)) − Yij(s)}

]2

∑nij
t=1{Yijt(s) − Yij(s)}2∑nij

t=1{m̂(2)
ij (X(2)

ijt (s)) − Yij(s)}
2. (3.9) 

It is shown in Theorem S1 of SM that the variance of ε(2)ijt (s) in Model 

(3.7) is less than or equal to the variance of ε(1)ijt (s) in Model (3.4) with the 

X(1)∗
ijt (s) as the regressor. This informs the benefits of adding more re-

gressors to the regression model as it can reduce the variations of the 
residual term and hence makes the regression model having better 
fitting performance, although it is another matter for prediction as 
having more variables may not lead to better forecast. An implication of 
the result is that asymptotically MSE(2)

ij (X(2)
ijt (s), s) ≤ MSE(1)

ij (X(1)∗
ijt (s), s)

and the R2 monotonically increases with the nested regressors. 
We proceed the nested forward procedure to select the third, the 

fourth important covariates and beyond until all the candidate cova-
riates are considered. The order of the variables being selected contains 
useful information on the relative importance of the meteorological 
factors on the pollutant concentration and has taken into consideration 
of the inter-dependence of the meteorological variables. 

To find out how much information in the BLH that can be explained 
by the surface meteorological variables, we carry on the same nested 
forward selection procedure by substituting the pollution concentration 
with BLH as the response variable and the surface variables as the re-
gressors. The order of the variables being selected are used as the order 
of relative importance for BLH. 

Furthermore, to avoid over-fitting of the nonparametric regression, 
we used a 10-fold cross validation (CV) procedure to gain information on 
the out-of-sample performance with the selected variables. The 10-fold 
CV randomly divides the data into 10 segments and alternatively uses 
any 9 segments at a time to fit the regression model and the remaining 
one to gain validation performance of the model. As the validation is 
made on the data set which is not used in the model fitting, it is more 
objective and is called the out-of-sample validation. Specifically, we 
randomly divided the data of a season at a station into 10 segments. 

Then, for each data segment (as the validation data set), we fit the 
nonparametric regression model on the remaining 9 segments of data 
(the training set) and evaluate its performance on the validation data set 
by calculating the out-of-sample R2

CV,k 

R2
CV,k =

{∑nk
t=1(Yk,t − Yk)(m̂ − k(Xk,t) − Yk)

}2

∑nk
t=1(Yk,t − Yk)

2∑nk
t=1{m̂ − k(Xk,t) − Yk}

2, k = 1, 2,…, 10, (3.10)  

where m̂− k(⋅) is the fitted regression function without the kth segment, 
Xk,t and Yk,t denote the tth observation in the kth segment. The cross- 
validated coefficient of determination R2

CV is 

R2
CV =

1
10
∑10

k=1
R2

CV,k, (3.11)  

3.3. Meteorological adjustment 

To gain information on the underlying emission, the meteorological 
effects on the pollution concentration has to be removed. There were 
methods to adjust for the meteorological variation, including the trend 
analysis approach proposed in Thompson et al. (2001) based on the 
linear regression and the three-year moving average method proposed 
by the US Environmental Protection Agency (EPA). Chen et al. (2018) 
showed that the latter method can not remove the meteorological con-
founding. Liang et al. (2015) proposed a general framework to adjust for 
the meteorological confounding, see Zhang et al. (2020) for compre-
hensive theoretical analysis. 

For air quality evaluation based on the meteorological variables 
Xijt(s), we consider Model (3.2) to quantify the meteorological rela-
tionship with the pollutant’s concentration Yijt(s). To remove the 
meteorological confounding, Liang et al. (2015) proposed a version of 
the average pollution concentration 

μij(s) = E(Yijt(s)) = E{mij(Xijt(s))} =

∫

mij(x, s)fj(x, s)dx, (3.12)  

where mij(Xijt(s)) is the regression function that can be estimated by 
(3.3), and fj(x, s) is a baseline probability density function for the 
meteorological variable X(s) in season j which can be constructed as 

fj(x, s) = A− 1
j

∑Aj

a=1
faj(x, s),

where faj(x, s) is the density function of meteorological variable Xajt(s) in 
year a of season j, and Aj is the number of years that the meteorological 
data are available. In our study, Aj was 10 as we used 10 years’ mete-
orological data from March 2011 to February 2021 to build the baseline 
density fj(x, s). 

An estimator for μij(s) which is free of the meteorological variation 
and can reflect the emission is 

μ̂ij(s) =

(
∑Aj

a=1
naj

)− 1
∑Aj

a=1

∑naj

t=1
m̂ij(Xajt(s)), (3.13)  

where naj is the number of meteorological sample size in season j of year 
a. The nonparametric regression estimator m̂ij(⋅) is (3.3). Unlike the raw 
averages, the temporally adjusted averages μ̂ij(s) are comparable for the 
specific season over different years as shown in Zhang et al. (2017a) and 
Chen et al. (2018). 

The air quality measures μ̂ij(𝒜) over a region 𝒜 occupied by a city is 
an average of the adjusted μ̂ij(s) over the monitoring sites in the region: 

μ̂ij(𝒜) = |𝒜|
− 1
∑

s∈𝒜

μ̂ij(s), (3.14)  

where |𝒜| denotes the number of monitoring sites in the region 𝒜. 
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4. Results 

We present the results of the analyzes in this section. 

4.1. Variable importance for pollutants 

We used the proposed methods in Section 3.2 to obtain the orders of 
meteorological variables for the six pollutants in each city in each sea-
son. Specifically, for the pollutant at each season and year, we attained 
the order of variable importance for each station in a city and then 
average the ranks over all stations in the city and over all years for the 
season. 

Figs. 1–3 display the seasonal average orders of the meteorological 
variables for PM2.5, NO2 and 8-h O3 in each city respectively, while those 
for the other three pollutants are shown in Figs. S3–S5. The numerical 
average ranks for each pollutant in the six cities were reported in 
Tables S1–S6. 

For PM2.5, as shown in Fig. 1, there was a consistent ordering in the 
variable ranks among the seasons and the cities, namely 

DEWP,  PRES,  TEMP,  BLH,  IWS,  WD,  IPREC. (4.1) 

We also noticed that, the above order of variable importance for 
PM2.5 was also obeyed for PM10, SO2 and CO as shown in Figs. S3–S5 in 
the SM. However, the orders for NO2 and 8-h O3, as shown in Figs. 2 and 
3 were different. For NO2, the variable order was 

BLH,  DEWP,  PRES,  TEMP,  IWS,  WD,  IPREC, (4.2)  

which saw BLH jumped to the leading position while the relative order 
of the other variables remained unchanged from (4.1). For ozone, the 
order was 

TEMP,  DEWP,  PRES,  BLH,  IWS,  WD,  IPREC, (4.3)  

which had the temperature (TEMP) became the leading variable. The 
strong consistency in the three orderings (4.1)–(4.3) among the six cities 
indicated consistency of the meteorological effects on the three cate-
gories of pollutants in the study region. 

The dew point temperature (DEWP) was the highest ranked variable 
for the PM-CO-SO2 group, and the second ranked for NO2 and O3. The 
reason for DEWP’s leading roles was its ability in reflecting both tem-
perature and humidity. It is noted that we did not consider the relative 
humidity as a variable since it is determined by the dew point and the air 
temperature. Air pressure (PRES) was the second ranked for the PM-CO- 
SO2 group, and the third ranked for NO2 and O3. Air temperature 
(TEMP) was the third ranked for the PM-CO-SO2 group, the fourth for 
NO2 but risen to the top place for ozone. TEMP’s leading role for ozone 
was due to its being a proxy for the solar radiation, a major element in 
the photo-chemistry process of ozone generation. The wind direction 
(WD) and the cumulative precipitation (IPREC) ranked the lowest for all 
six pollutants. Cumulative wind speed (IWS) was the third last ranked 
for all six species. 

It should be noted that the ranking did not suggest that the lower 
ranking variables, say IWS, WD and IPREC, were not influential to the 
pollutant’s concentration, but rather their relative importance after 
considering the other variables. In particular, the impacts of the lowly 
ranked variables had been represented by the higher ranking variables. 
Indeed, a change in the wind direction from the southerly to northerly 
would bring dryer, cooler and cleaner air mass from the north, which led 
to a lower DEWP. 

It was interesting to see BLH became the leading variable for NO2. 
BLH was the clear top variable for all six cities in the three non-winter 
seasons. The leading role of BLH to NO2 can be understood by noting 
the pathway NO2 + O2 → O3 + NO that converts NO2 to ozone under 
solar radiation, and the fact that the reverse pathway is weaken by 
interference of other chemical elements in polluted air which consumed 

Fig. 1. Seasonal average ranks of the meteorological variables for PM2.5 regression from 2013 to 2020. The dots with different colors represent ranks with the 
horizontal dashed lines marking the average ranks, reported inside the parentheses on the right edges, of the variables among the six cities based on the seasonal 
regression models. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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much NO leading to a weakening of the reverse process. As BLH is highly 
correlated with the solar radiation, BLH became a proxy for the radia-
tion and hence the leading meteorological variable for NO2. Indeed, as 
shown in Figs. S6 and S7, NO2 was the pollutant which BLH had both the 
highest correlation and the partial correlation after conditioning on the 
other meteorological variables. The partial correlation has filtered out 
the effects of the other variables on the pollutant (Anderson, 2003). 
While the partial correlation of BLH with the other five pollutants were 
much reduced after considering the other variables, its partial correla-
tion with the NO2 remained at a relative high level as shown in Figs. S12 
and S13, which provides a statistical understanding for the BLH’s 
leading role in NO2. 

The temperature’s leading role to Ozone can be appreciated by its 
close relationship with the solar radiation, and the latter is directly 
involved in the ozone generation. As shown in Figs. S10 and S11, the 
temperature had the highest partial correlation with the O3 which 
explained its leading role among the meteorological variables. It is 
interesting to see a large change in the correlation between BLH and 
ozone after we conditioned on the other variables in Figs. S6 and S7, 
which provided an explanation for BLH’s dropping to the fifth or sixth 
place for ozone in the non-winter seasons in Fig. 3. 

Fig. 4 reports the cumulative R2 curves in Beijing as the meteoro-
logical variables were added according to the forward selection pro-
cedure. Similar plots for the other five cities are available in 
Figs. S14–S16. These figures showed a rapid increase in the R2 as the first 
three or four ranked variables were added in the models, while the 
growth in the cumulative R2 was much slower after the fourth variables. 
These suggest that the top three or four variables in (4.1)-(4.3) contain 
high percentages of the meteorological information. 

4.2. Role of boundary layer height 

The analysis in the last subsection showed that, except for NO2, the 
BLH ranked around the fourth or fifth place in the overall variable 
ranking for the pollutants. In particular, it ranked behind DEWP, PRES, 
TEMP for the five non-NO2 pollutants in both the ranking and the con-
tributions to the R2 in Fig. 4. These did not necessarily imply that BLH 
was not influential to these species, but rather its role was relatively less 
important when the other meteorological variables were considered. 

For better viewing on the correlation between BLH and the pollut-
ants, Figs. S6 and S7 display the heat-map of the correlations between 
BLH and the pollutants and the corresponding partial correlations by 
conditioning on the surface meteorological variables. The partial cor-
relations filter out the role of the surface meteorological variables, and 
tended to reduce the magnitude of the usual correlations. Both forms of 
the correlations were largely negative for the five pollutants other than 
the 8-h O3 which were positive. The negative correlations between BLH 
and NO2 were the highest among the six species. This was consistent 
with the finding in (4.2) that the BLH was the leading variable for NO2. 
Now we try to understand the importance of BLH from the aspect that 
how much data information contained in BLH can be explained by the 
other meteorological variables. 

To address this question, we conduct analysis based on the 
nonparametric regression model (3.2) but with the response variable Y 
being BLH and the regressors X̃ being the other meteorological 
variables: 

BLHijt = mij(X̃ijt) + εijt, t = 1, 2,…, nij. (4.4)  

Fig. S23 in SM reports the variable ranks from the forward selection 
algorithm, which shows that the temperature (TEMP), dew point 
(DEWP), and pressure (PRES) were the top three factors for BLH in three 

Fig. 2. Seasonal average ranks of the meteorological variables for NO2 regression from 2013 to 2020. The dots with different colors represent ranks with the 
horizontal dashed lines marking the average ranks, reported inside the parentheses on the right edges, of the variables among the six cities based on the seasonal 
regression models. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 3. Seasonal average ranks of the meteorological variables for 8-h O3 regression from 2013 to 2020. The dots with different colors represent ranks with the 
horizontal dashed lines marking the average ranks, reported inside the parentheses on the right edges, of the variables among the six cities based on the seasonal 
regression models. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Seasonal step-wise cumulative in-sample R2 (segmented lines) with variables added to the nonparametric regression of PM2.5 in Beijing according to their 
ranks selected in the forward procedure, and the histograms (grey color bars) for the distributions of the ranks occupied by the BLH (scaled on the right). The ranks of 
BLH are also marked by black crosses. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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seasons other than fall, where in fall IWS replaced pressure as the third 
one. We consider two different subsets of X̃. One was the five variables 
without IPREC as it was the last ranked in the rankings reported in (4.1)- 
(4.3). And the other subset contains only the three top variables, DEWP, 
TEMP and PRES, which were the most important three ones among most 
cities and seasons and they ranked in front of BLH in most cases. 

Table 1 reports both the seasonal in-sample R2 and the out-of-sample 
R2

CV when regressing BLH with respect to the three and the five variable 
sets, respectively, for the six cities. The results showed that the average 
in-sample R2 with the three top variables can attain at least 77% of the 
total variation in BLH among the four seasons and the six cities, which 
was risen to at least 92% with the five variables’ set of the meteoro-
logical factors as the regressors. As expected, the out-of-sample R2

CVs 
were lower than the corresponding R2. However, the minimum R2

CV was 
still 57% with the three top variables and risen to 68% for the five 
variables’ set. 

The results conveyed in Table 1 suggest that much of the information 
in BLH can be modeled by the other meteorological variables, and by the 
top three variables DEWP, TEMP and PRES in particular. The results 
provide explanation on why BLH was not ranked high for most of the 
pollutant species as conveyed in Figs. 1 and 3, as well as on the marginal 
contribution to the R2 by the BLH (Figs. 4 and 5). 

To gain further insights on the role of the BLH, we studied its in-
fluence on the air quality measures by calculating the meteorologically 
adjusted average concentration (3.13) with BLH versus those without 
BLH as a covariate. Specifically, for a city that encompasses region 𝒜, let 
μ̂ij(𝒜) and μ̂− BLH

ij (𝒜) be the adjusted average concentrations with and 
without BLH, respectively, for year i and season j via (3.14). The BLH 
effect is measured by relative change caused by without BLH 

r̂ ij(𝒜) = |μ̂ij(𝒜) − μ̂ − BLH
ij (𝒜)|

/
μ̂ij(𝒜). (4.5) 

Table 2 summarizes the average and the maximum BLH effects (in 
percentage) over the 32 seasons from 2013 to 2020 for the six pollutants 
in the six cities. Among the 36 pollutant-city combinations for the esti-
mated average BLH effects, 16 of them were less than 1% and 15 be-
tween 1% and 1.5%, and only 5 of them above 1.5%, indicating rather 
mild BLH effects on the pollutants among the six cities. However, the 
BLH effects appeared not evenly distributed among the species and 
cities. Beijing and Tianjin had smaller average and maximum effects 
while those for Taiyuan and Jinan were larger. Taiyuan had the largest 
average and maximum effects among the six cities, which may be due to 
its higher elevation (average 800 m) as the other five cities are all sit-
uated in the North China Plain. 

To gain information on the significance of the BLH effects reported in 

Table 2, we conducted statistical testing for the hypothesis H0 : μij(𝒜) =

μ− BLH
ij (𝒜) versus H1 : μij(𝒜) ∕= μ− BLH

ij (𝒜) at 5% significance level in each 
season for each city and pollutant. The p-value of each testing was ob-
tained based on 300 bootstrap resampling of the test statistics (Liang 
et al., 2015; Zhang et al., 2017a). Table 3 summarizes the overall testing 
results by providing the frequencies of rejecting the above H0 among the 
32 seasons from 2013 to 2020 for each city and each pollutant. It shows 
that only Taiyuan, Jinan and Zhengzhou had significant BLH effects. 
Taiyuan had the most number of significant differences for three species 
(SO2, NO2 and O3), but still the numbers of significant seasons ranged 
from 2 to 4 seasons. The results of Table 3 were consistent to those in 
Table 2, showing the BLH’s effect was largely small as far as the average 
air quality measures were concerned. 

5. Conclusion 

Existing studies on the meteorological effects on air pollution tended 
to consider one variable at a time as showed in the cited works of the 
paper. This study is designed to evaluate the collective meteorological 
effects that takes into account the mutual dependence among the 
meteorological variables. And it finds that there were much agreement 
in the meteorological effects on the air pollution in North China, as re-
flected by the much agreed orders of variable importance on the six 
major air pollutants. These suggest stable meteorological processes with 
respect to the air pollution in North China, which may be used for 
meteorological modeling and prediction of air quality. 

The study also reveals that, due to the inter-dependence of the 
meteorological variables, the top three variables can provide quite 
satisfactory modeling for the meteorological effects of a pollutant, as 
reflected by the rapid increase in the R2 among the first three variables. 
The inter-dependence of the meteorological variables means that the 
less ranked variable’s information and their effects on the pollutants can 
be well represented by the top ranked meteorological variables, as 
demonstrated in the case of BLH. The inter-dependence also means that 
adequate surface air quality measures can be well approximated by 
utilizing the surface meteorological variables as much of the data in-
formation in the mixing layer may be well represented by the surface 
variables. 

Our study has considered only one non-surface variable. Other var-
iables at the vertical pressure layers within the mixing layer can be 
considered and their importance can be assessed using the method 
demonstrated in the study. Given the high correlation between the 
variables on the surface and the vertical layer, it would not be surprising 
to see the meteorological information in the vertical layer can be well 
substituted by the surface variables for most of the pollutants. 

Table 1 
Seasonal in-sample R2 and the out-sample R2

CV for BLH with the top three meteorological variables (DEWP, PRES, TEMP) or five variables (DEWP, PRES, TEMP, IWS, 
WD) for the six cities (averaged from 2013 to 2020). The numbers inside the parentheses are the standard errors of the average R2 above.  

City Number of Spring Summer Fall Winter  

Variables R2 R2
CV  R2 R2

CV  R2 R2
CV  R2 R2

CV  

Beijing 3 0.85 0.64 0.77 0.57 0.88 0.71 0.78 0.60  
5 0.96 0.76 0.91 0.67 0.95 0.77 0.93 0.69 

Jinan 3 0.82 0.56 0.78 0.57 0.86 0.64 0.80 0.56  
5 0.95 0.68 0.94 0.69 0.96 0.76 0.95 0.71 

Shijiazhuang 3 0.83 0.59 0.76 0.54 0.85 0.63 0.78 0.54  
5 0.96 0.73 0.92 0.66 0.95 0.73 0.93 0.68 

Taiyuan 3 0.78 0.58 0.78 0.63 0.82 0.66 0.76 0.58  
5 0.94 0.71 0.90 0.70 0.93 0.72 0.91 0.66 

Tianjin 3 0.83 0.58 0.76 0.55 0.85 0.67 0.79 0.57  
5 0.96 0.73 0.92 0.67 0.96 0.76 0.94 0.71 

Zhengzhou 3 0.82 0.58 0.77 0.57 0.85 0.63 0.81 0.58  
5 0.96 0.74 0.94 0.71 0.96 0.74 0.95 0.70 

Average 3 0.82 0.59 0.77 0.57 0.85 0.66 0.79 0.57   
(0.009) (0.011) (0.003) (0.012) (0.008) (0.012) (0.007) (0.008)  

5 0.96 0.72 0.92 0.68 0.95 0.75 0.93 0.69   
(0.003) (0.010) (0.006) (0.009) (0.005) (0.008) (0.006) (0.008)  
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Fig. 5. Seasonal step-wise cumulative in-sample R2 (segmented lines) with variables added to the nonparametric regression of 8-h O3 in Beijing according to their 
ranks selected in the forward procedure, and the histograms (grey color bars) for the distributions of the ranks occupied by the BLH (scaled on the right). The ranks of 
BLH are also marked by black crosses. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
The average relative BLH effects (standard deviations) and the maximum BLH effects (the second row) ̂rij(𝒜) in (4.5) in percentage term for the six pollutants and the 
six cities over the 32 seasons from 2013 to 2020.  

Pollutants Beijing Jinan Shijiazhuang Taiyuan Tianjin Zhengzhou Average 

PM2.5 0.83(0.12) 1.29(0.15) 0.82(0.12) 1.57(0.24) 1.02(0.13) 0.73(0.09) 1.04(0.12)  
2.54 4.02 2.74 5.52 2.89 1.98 3.28 

PM10 0.65(0.12) 1.07(0.14) 0.67(0.10) 1.34(0.22) 0.93(0.11) 0.70(0.08) 0.89(0.10)  
2.82 4.06 2.27 4.31 2.15 1.80 2.90 

SO2 1.20(0.13) 1.37(0.19) 1.19(0.21) 2.32(0.36) 1.15(0.13) 0.96(0.14) 1.37(0.18)  
2.74 4.38 6.06 7.90 3.25 3.22 4.59 

NO2 0.94(0.13) 1.58(0.19) 1.29(0.15) 1.39(0.18) 1.13(0.13) 1.13(0.28) 1.24(0.08)  
2.96 4.29 4.06 3.77 2.63 8.55 4.37 

CO 0.78(0.14) 1.24(0.18) 1.10(0.18) 0.99(0.17) 0.80(0.10) 0.72(0.15) 0.94(0.08)  
2.86 4.04 3.71 4.16 2.39 4.37 3.59 

8-h O3 0.56(0.08) 2.72(0.38) 1.29(0.21) 3.79(0.47) 0.79(0.11) 0.73(0.12) 1.65(0.49)  
1.76 7.19 5.13 10.62 2.27 2.34 4.88 

Average 0.83(0.09) 1.55(0.24) 1.06(0.11) 1.90(0.42) 0.97(0.06) 0.83(0.07) 1.19(0.10)  
2.61 4.66 3.99 6.05 2.60 3.71 3.94  

Table 3 
Frequencies (percentages) of significant differences (at 5% level) in the seasonal adjusted average pollution concentrations that included BLH versus those without BLH 
for the six pollutants and the six cities over the 32 seasons from 2013 to 2020.  

Pollutants Beijing Jinan Shijiazhuang Taiyuan Tianjin Zhengzhou 

PM2.5 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
PM10 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
SO2 0 (0) 0 (0) 0 (0) 2 (6.25%) 0 (0) 0 (0) 
NO2 0 (0) 0 (0) 0 (0) 3 (9.38%) 0 (0) 2 (6.25%) 
CO 0 (0) 2 (6.25%) 0 (0) 0 (0) 0 (0) 1 (3.13%) 
8-h O3 0 (0) 2 (6.25%) 0 (0) 4 (12.5%) 0 (0) 0 (0)  
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